Show simple item record

dc.coverage.spatialASIA
dc.coverage.spatialAUSTRALIA
dc.coverage.spatialNEW ZEALAND
dc.creatorUN.ECAFE
dc.creatorUnited Nations Educational, Scientific and Cultural Organization (UNESCO)
dc.date.accessioned2023-11-07T03:50:04Z
dc.date.available2023-11-07T03:50:04Z
dc.date.issued1970
dc.identifier.urihttps://hdl.handle.net/20.500.12870/6514
dc.description.abstract<p>The Second Seminar on Geochemical Prospecting Methods and Techniques, with special emphasis on their application under humid tropical conditions, was organized, pursuant to resolution 2.321 adopted by the General Conference of UNESCO at its fifteenth session (1968), in co-operation with the United Nations Economic Commission for Asia and the Far East(ECAFE), for the purpose of assisting the member states of Asia in the development of training and research in the earth sciences.</p><p>The publication consists of two parts: Part I, report of the Second Seminar on Geochemical Prospecting Methods and Techniques (with special reference to their applicability in tropical humid zones); and part II, Documentation. Part II is divided into ten sections (A to J) covering the main subjects discussed at the seminar and these are further sub divided, where possible, into sub-headings covering particular topics under each subject.</p>
dc.description.tableofcontents<p>Part 1</p> <p>REPORT OF THE SECOND SEMINAR ON GEOCHEMICAL PROSPECTING</p> <p>METHODS AND TECHNIQUES</p> <p>(With special reference to their applicability in tropical humid zones)</p> <ol> <li>Introduction ................................................................................................................................... 1</li> <li>Status of geochemical exploration in participating Asian countries .......................................... 1</li> <li>Regional reconnaissance geochemical exploration techniques based on samples of stream sediments</li> </ol> <p>or soils ................................................................................................................................. 2</p> <ol> <li>Methods of detailed geochemical exploration based on the sampling of soils, including discussion</li> </ol> <p>of geochemical characteristics of tropical soil profiles ......................................................... 3</p> <ol> <li>Recent advances in analytical procedures.......................................................................................... 5</li> <li>Integrated geochemical exploration and geophysical methods .................................................. 6</li> <li>Geobotany and biogeochemistry in mineral exploration and infrared remote sensing.................. 6</li> <li>Field and laboratory demonstrations or heavy-mineral exploration .......................................... 7</li> <li>Laboratory exercise in the use of atomic absorption apparatus .................................................. 8</li> <li>Statistical applications in geochemical prospecting......................................................... 8</li> <li>Mobile field laboratories................................................................................................................ 9</li> <li>X-ray techniques................................................................................................................................. 9</li> <li>Selective ion electrodes ................................................................................................................. 9</li> <li>Mercury in geochemical exploration................................................................................................. 9</li> <li>Sample control................................................................................................................................. 9</li> <li>Electron-probe microanalysis ......................................................................................................... 9</li> <li>General review of technical aspects of geochemical exploration ................................................. 9</li> <li>Use of non-professional people in national programmes of geochemical exploration.......................10</li> </ol> <p>ANNEXES</p> <ol> <li>Attendance...............................................................................................................................................11</li> <li>Agenda ......................... 15</li> <li>List of documents .............................................................................................................................. 17</li> <li>List of maps displayed at the Seminar.............................................................................................. 23</li> </ol> <p>Part 2</p> <p>DOCUMENTATION</p> <ol> <li>STATUS OF GEOCHEMICAL EXPLORATION</li> <li>In Asian countries</li> </ol> <p>2Aa</p> <ol> <li>Geochemical prospecting activities in Burma ............................................................................. 25</li> </ol> <p>Table 1. Laboratories in Burma making trace-element analyses............................................. 26</p> <p>Table 2. Geochemical field investigations in Burma............................................................. 26</p> <ol> <li>Status of geochemical exploration in Ceylon ............................................................................. 27</li> <li>Geochemical exploration in Taiwan, China..................................................................................... 29</li> </ol> <p>Figure 1. Geochemical exploration in Taiwan, China............................................................. 30</p> <ol> <li>Geochemical prospecting in Taiwan, China..................................................................................... 32</li> <li>Present status of geochemical prospecting in India ..................................................................... 35</li> </ol> <p>Figure 1. Geochemical prospecting in India............................................................................. 35</p> <p>Table 1. Summary of areas covered by geochemical prospecting in India (1960-1970) .. 36</p> <ol> <li>Current status of geochemical prospecting in India..................................................................... 40</li> <li>Status of geochemical exploration in Indonesia............................................................................. 43</li> </ol> <p>Figure 1. General mineral exploration in Indonesia as of June 1970 .................................... 45</p> <p>Table 1. Principal government organizations conducting geochemical exploration work in</p> <p>Indonesia............................................................................................... 47</p> <ol> <li>Present status of geochemical prospecting for metallic ore deposits in Japan........................... 48</li> </ol> <p>Figure 1. Activities of geochemical prospecting for metallic ore deposits in Japan (1949-1968) 48</p> <p>Figure 2. The relation between types of ore deposits and indicator elements in Japan .. 49</p> <ol> <li>Regional geochemical reconnaissance exploration for metallic mineral deposits in the Republic</li> </ol> <p>of Korea.................................................................................................................................... 51</p> <p>Figure 1. Map showing the state of regional geochemical exploration in the Republic of</p> <p>Korea as of 1970 ............................................................................... 51</p> <p>Figure 2. Geologic map of the Republic of Korea...................................................................... 52</p> <p>Table 1. Background values for metals in the Republic of Korea ..................................... 53</p> <p>Table 2. Anomalous values for metals in the Republic of Korea ..................................... 54</p> <p>Figure 3. Regional geochemical reconnaissance exploration for copper, lead, and zinc in the</p> <p>Republic of Korea............................................................................... 54</p> <p>Figure 4. Regional geochemical reconnaissance exploration for molybdenum, tungsten,</p> <p>bismuth, and tin in the Republic of Korea...................................... 55</p> <p>Figure 5. Metallogenic map of the Republic of Korea............................................................ 56</p> <ol> <li>Status of geochemical exploration in Malaysia............................................................................ 57</li> </ol> <p>Figure 1. Plan showing areas in Malaysia covered by geochemical surveys, 1970 &bull; &bull; &bull; &bull; 58</p> <ol> <li>Geochemical prospecting in Pakistan............................................................................................ 62</li> <li>Geochemical prospecting activities in Thailand ............................................................................ 64</li> </ol> <p>Figure 1. Map showing the locations of geochemical activities in Thailand through July 1970 64</p> <p>Table 1. Geochemical analyses in Thailand........................................................................... 67</p> <ol> <li>In Australia and New Zealand</li> </ol> <p>2Ab</p> <ol> <li>Recent research in geochemical prospecting in Australia........................................................... 68</li> </ol> <p>Table 1. Organizations supplying data on recent research on geochemical exploration in</p> <p>Australia . 68</p> <p>Table 2. Threshold contents of Ni, Co, Cr, and Cu in soils and rocks in Western Australia 70</p> <ol> <li>Exploration geochemistry in New Zealand ........................................................................... 73</li> </ol> <p>Table 1. Copper and molybdenum concentrations (ppm) in leaf ash and soils from Copper[1]stain Creek, New Zealand..................................................................... 82</p> <p>Table 2. Correlation coefficients (r) for logarithms of concentrations (ppm) of copper and</p> <p>molybdenum in 45 samples of leaf ash and associated soils from Copperstain</p> <p>Creek, New Zealand............................................................................. 83</p> <p>Table 3. Copper and molybdenum concentrations (ppm) in the ash of various organs of 26</p> <p>specimens of Olearia rani and associated soils from Copperstain Creek, New</p> <p>Zealand ............................................................................................. 84</p> <p>Table 4. Correlation coefficients (r) for logarithms of concentrations (ppm) of copper and</p> <p>molybdenum in organs of 26 specimens of Olearia rani and associated soils from</p> <p>Copperstain Creek, New Zealand..................................................... 84</p> <p>Table 5. A comparative assessment of some methods of exploration used at Copperstain</p> <p>Creek, New Zealand............................................................................. 85</p> <p>Figure 1. Map of New Zealand showing localities referred to ............................................ 74</p> <p>Figure 2. Spectral reflectances of various types of vegetation ............................................ 79</p> <p>Figure 3. Geological map of mineralization in the Takaka area, NewZealand...................... 81</p> <p>Figure 4. Map of streams in the Takaka area, New Zealand. Valuesfor molybdenum</p> <p>concentrations (ppm) in stream sediments (large figures) and for total heavy metals</p> <p>(ppb) in stream waters (small figures). Area in box is that covered by Figure 3 82</p> <p>Figure 5. Plant-soil relationship for molybdenum in the ash of leaves of Olearia rani .. 83</p> <p>Figure 6. Threshold values for plant and soil anomalies for molybdenum obtained from</p> <p>cumulative frequency plots ............................................................. 83</p> <p>Figure 7. Molybdenum anomaly delineated by soil and plant data, Copperstain Creek area,</p> <p>New Zealand. Large circles denote background values and small dots denote</p> <p>mineralization..................................................................................... 84</p> <p>2B. REGIONAL RECONNAISSANCE GEOCHEMICAL EXPLORATION</p> <ol> <li>Techniques based on stream sediment or soil samples</li> </ol> <p>2Ba</p> <ol> <li>Geochemical prospecting methods in Ghana .............................................................................88</li> <li>Geochemical prospecting in gossans and lateritic soils of Alabama, U.S.A...................................90</li> </ol> <p>Table 1. Minor elements in gossans and other iron ores of Alabama, U.S.A., by spectro[1]graphic analysis (per cent) ...............................................................92</p> <p>Table 2. Minor elements in lateritic soil of Alabama, USA, by spectrographic analysis</p> <p>(per cent)................................................................................................93</p> <p>Figure 1. Map showing Piedmont province in Alabama, USA (stippled), mines, and sample</p> <p>localities (X) .......................................................................................91</p> <ol> <li>Evaluation of the geochemical methods of prospecting for non-ferrous metals in south India ..95</li> </ol> <p>Figure 1. Map showing the areas investigated by geochemical exploration in southern</p> <p>region of India together with the soils and climatic regions ...........................96</p> <ol> <li>Regional geochemical survey, Ayr 1 :250,000 sheet, Queensland (abstract) ............................103</li> <li>Review of geochemical exploration research by Australian Selection Pty. Ltd...........................104</li> <li>A geochemical orientation survey in Block 3, northern Sumatra &hellip;&hellip;&hellip;&hellip;&hellip;&hellip;&hellip;&hellip;&hellip;&hellip;.107</li> </ol> <p>Table 1. Threshold values in ppm in Block 3, northern Sumatra .........................110</p> <p>Table 2. Coarse to fine fraction ratios in samples from selected areas in Block 3, northern</p> <p>Sumatra ......................................................................................................................112</p> <p>Table 3. Soil profile at lead prospect in Block 3, northern Sumatra....................................113</p> <p>Figure 1. Geology of part of Block 3, northern Sumatra ....................................................108</p> <p>Figure 2. Log-probability plot for copper, lead, and zinc in Block 3, northern Sumatra ..110</p> <p>Figure 3. Details of sampling Block 3, northern Sumatra ....................................................111</p> <ol> <li>Techniques based on detrital resistate heavy minerals</li> </ol> <p>2Bb</p> <ol> <li>Rare earths of monazites and geology of southern Madagascar ............................................115</li> </ol> <p>Table 1. Analysis of yttrium earths in Madagascar monazites through spectral density</p> <p>scale measurements (Hilger and Watts, E. 742 quartz grating spectrograph); three</p> <p>exposures for each monazite...............................................................120</p> <p>Table 2. Distribution of rare earths (ppm) and radioactivity (counts per minute) in monazite</p> <p>from several tectonic units of southern Madagascar .....................120</p> <p>Figure 1. Tectonic map of southern Madagascar (L. Radelli, 1969) ....................................117</p> <p>Figure 2. Map of metamorphism of southern Madagascar (J. Chantraine and L. Radelli)</p> <p>Figure 3. Studies of La and Y &mdash; geotectonic map (L. Radelli, 1969).................................... 118</p> <p>Figure 4. Studies of La and Y &mdash; geochemical anomalies (after J. Borucki) ................... 119</p> <p>Figure 5. Radioactivity of monazites in southern Madagascar ............................................119</p> <p>Figure 6. Lutetium in monazites from southern Madagascar ............................................ 121</p> <p>Figure 7. Gadolinium in monazites from southern Madagascar.................................................. 121</p> <p>Figure 8. Ytterbium in monazites from southern Madagascar .. .. ............................ 121</p> <p>Figure 9.Erbium in monazites from southern Madagascar............................................................ 122</p> <p>Figure 10. Europium in monazites from southern Madagascar.................................................. 122</p> <p>Figure 11. Terbium in monazites from southern Madagascar ..................................................122</p> <p>Figure 12 Thulium in monazites from southern Madagascar ..................................................122</p> <p>Figure 13. Yttrium in monazites from southern Madagascar ............................................. 123</p> <p>Figure 14. Map showing location, geologic source, size, and colour of &ldquo;in situ&rdquo; samples of</p> <p>monazite from southern Madagascar used for analysis..........................123</p> <p>Figure 15. Frequency distribution of rare earths in monazites from southern Madagascar (J.</p> <p>Altmann, 1969) .................... .................................................... 124</p> <p>Figure 16. Frequency distribution of average contents of rare earths in monazites from southern</p> <p>Madagascar (J. Altmann, 1969) ..................................................... 125</p> <ol> <li>Use of iron-oxide pseudomorphs after pyrite in geochemical prospecting........................................ 127</li> </ol> <p>Table 1. Chemical analyses of iron-oxide pseudomorphs after pyrite, South Carolina, USA 128</p> <p>Table 2. Chemical analyses of iron-oxide modules and concretions from Cabarrus County,</p> <p>North Carolina, USA ................................................................................................. 129</p> <ol> <li>Determination of source rocks from heavy minerals in residual soils of saprolite, Piedmont of</li> </ol> <p>North Carolina (abstract) ................................. 130</p> <ol> <li>Geochemical prospecting in the Goias Project, central Brazil, through 1969 ........................... 131</li> <li>Geochemical orientation survey, Astrolabe, Papua 1964 (abstract)................................................ 135</li> <li>Minor elements in detrital garnets, North Carolina and South Carolina, USA........................... 136</li> </ol> <p>Figure 1. Isograms for detrital garnet in the area between the Savannah and Catawba Rivers,</p> <p>South Carolina and North Carolina, USA .......................................... 136</p> <p>Figure 2. Isograms for detrital sillimanite in the area between the Savannah and Catawba</p> <p>Rivers, South Carolina and North Carolina, USA.................................. 137</p> <p>Figure 3. Isograms for detrital epidote and staurolite in the area between the Savannah and</p> <p>Catawba Rivers, South Carolina and North Carolina, USA..................137</p> <p>Figure 4. Isograms for detrital monazite in the area between the Savannah and Catawba</p> <p>Rivers, South Carolina and North Carolina, USA ..........................138</p> <p>Figure 5. Manganese, calcium, and barium in detrital garnets, North Carolina and South</p> <p>Carolina, USA........................................................................................... 138</p> <p>Figure 6. Magnesium and chromium in detrital garnets, North Carolina and South Carolina,</p> <p>USA............................................................................................................138</p> <p>Figure 7. Lanthanum, cerium, and neodymium in detrital garnets, North Carolina and South</p> <p>Carolina, USA........................................................................................... 139</p> <p>Figure 8. Yttrium and ytterbium in detrital garnets, North Carolina and South Carolina,</p> <p>USA............................................................................................................ 140</p> <p>Figure 9. Titanium and niobium in detrital garnets, North Carolina and South Carolina, USA 140</p> <p>Figure 10. Cobalt, nickel, and vanadium in detrital garnets, North Carolina and South</p> <p>Carolina, USA............................................................................................. 140</p> <p>Figure 11. Copper, beryllium, tin, and lead in detrital garnets, North Carolina and South</p> <p>Carolina, USA........................................................................................</p> <p>Figure 12. Zirconium and hafnium in detrital garnets, North Carolina and South Carolina, USA 141</p> <p>Figure 13. Scandium, molybdenum, and gallium in detrital garnets, North Carolina and South</p> <p>Carolina, USA........................................................................................ 141</p> <ol> <li>Influence of grain size on percentages of ThO2 and U3O8 in detrital monazite from North</li> </ol> <p>Carolina and South Carolina, USA ................... 143</p> <p>Table 1. Content, in per cent, of ThO2 and U3O8 in sized detrital monazite, North Carolina</p> <p>and South Carolina, USA............................................................................145</p> <p>Table 2. Summary of relation of grain size of monazite from North and South Carolina,</p> <p>USA, to composition.....................................................................................146</p> <p>Table 3. Differences, in per cent, of content of ThO2 in pairs of coarse-grained and fine[1]grained detrital monazite from North Carolina and South Caroline, USA .. 146</p> <p>Table 4. Differences, in per cent, of content of U3O8 in pairs of coarse-grained and fine[1]grained detrital monazite from North Carolina and South Carolina, USA .. 148</p> <p>Table 5. Percentage of sized monazite grains in saprolite of rock units in the Shelby</p> <p>quadrangle, North Carolina, USA .. ..............................150</p> <p>Table 6. Percentage distributions of monazite by grain size and rock type, Shelby quadrangle,</p> <p>North Carolina, USA ............................................................................ 150</p> <p>Table 7. Areal relations of monazite to source rocks in the Shelby quadrangle, North</p> <p>Carolina, USA.............................................................................................151</p> <p>Figure 1. Percentage of ThO2 by grain size in detrital monazite from North Carolina and</p> <p>South Carolina, USA ............................................................................146</p> <p>Figure 2. Percentage of ThO2 related to end members of eight series of sieved fractions of</p> <p>monazite from North Carolina and South Carolina, USA.................. 147</p> <p>Figure 3. Percentage of U3O8 by grain size in detrital monazite from North Carolina and</p> <p>South Carolina, USA .................................................................................................. 148</p> <p>Figure 4. Percentage of U3O8 related to end members of eight series of sieved fractions of</p> <p>monazite from North Carolina and South Carolina, USA.........................................149</p> <ol> <li>Geochemistry of monazite from Madagascar .................................................................................. 154</li> </ol> <p>Table 1. Heavy lanthanides and yttrium determinations on Madagascar monazites by emis[1]sion spectrography.................................................................................... 157</p> <p>Table 2. Regional distribution of the rare earth and radiometric anomalies in monazites</p> <p>from Madagascar .................................................................................... 157</p> <p>Figure 1. Radioactivity of monazites in Madagascar ...................................................................155</p> <p>Figure 2. Frequency of the average contents of rare earths, monazites in Madagascar 156</p> <p>Figure 3. Europium content of monazites in Madagascar.......................................................... 157</p> <p>Figure 4. Gadolinium content of monazites in Madagascar.......................................................... 157</p> <p>Figure 5. Terbium content of monazites in Madagascar ...........................................................158</p> <p>Figure 6. Erbium content of monazites in Madagascar ........................... 158</p> <p>Figure 7. Thulium content of monazites in Madagascar ................... 158</p> <p>Figure 8. Ytterbium content of monazites in Madagascar..........................................................158</p> <p>Figure 9. Lutetium content of monazites in Madagascar..........................................................159</p> <p>Figure 10. Yttrium content of monazites in Madagascar .........................................................159</p> <p>Figure 11. Monazites in rocks of Madagascar.................................................................................. 159</p> <p>Figure 12. Average rare-earth contents in seven monazites found in place in Madagascar .. 159</p> <ol> <li>Heavy-mineral reconnaissance for gold and copper deposits of the Chinkuashih area, Taiwan</li> </ol> <p>(abstract)......................................................................................................................................... 162</p> <ol> <li>Anomalous heavy minerals in the High Rock quadrangle, North Carolina, USA ................... 163</li> </ol> <p>Figure 1. Index map of west-central North Carolina, USA, showing location of the High Rock</p> <p>quadrangle. Geology generalized from King (1955) and from the geologic map of</p> <p>North Carolina (Stuckey and Conrad, 1958)..................................... 163</p> <p>2C. DETAILED GEOCHEMICAL EXPLORATION</p> <ol> <li>Techniques based on soil or rock, and geochemical characteristics</li> </ol> <p>of tropical soil profiles</p> <p>2Ca</p> <ol> <li>Nickeliferous soils and stream sediments associated with peridotite near Democrat, North Carolina</li> </ol> <p>(abstract)...................................................................................................................................... 165</p> <ol> <li>Observations on the geochemistry of molybdenum at Eagle Mountain, Guyana ................... 166</li> </ol> <p>Figure 1. Stream-sediment sample localities, showing molybdenum content in parts per million;</p> <p>Area 1 molybdenum prospect, Eagle Mountain, Guyana ............ 167</p> <p>Figure 2. Stream-sediment sample localities, showing molybdenum content in parts per million;</p> <p>Area 2 molybdenum prospects, Eagle Mountain, Guyana................................... 167</p> <ol> <li>Geochemical orientation survey Wau, New Guinea (abstract).........................................................170</li> <li>Residual enrichment and supergene migration of gold, southeastern United States (abstract) .. 171</li> <li>Trial geochemical reconnaissance in the Sardine Mines area, Ewan, North Queensland .. .. 172</li> </ol> <p>Table 1. Results in parts per million of copper by cold acid extraction and hot aqua regia</p> <p>extraction, Sardine Gully, Ewan area, North Queensland, Australia. 173</p> <p>Table 2. Results in parts per million of copper by cold acid extraction, Oakey Creek, Ewan</p> <p>area, North Queensland, Australia .................................................. 173</p> <p>Table 3. Results of traverse over anomaly 33, Ewan area, North Queensland, Australia .. 175</p> <p>Figure 1. Sketch map of Sardine Gully, Ewan area, North Queensland, Australia, showing</p> <p>sample locations ................................................................................... 173</p> <p>Figure 2. Sketch map of approximately 1 mile of Oakey Creek, Ewan area, North Queens[1]land, Australia, showing sample locations.......................................... 174</p> <p>Figure 3. Sketch map of anomalous copper area near sample 33, Ewan area, North Queens[1]land, Australia........................................................................................175</p> <p>Figure 4. Cu calibration graph............................................ .....................................................177</p> <ol> <li>Geochemical data on the uraniferous phosphorites of Mussoorie, Dehra Dun district, Uttar</li> </ol> <p>Pradesh, India..................................179</p> <p>Table 1. Generalized stratigraphic section, Mussoorie area, India ........................... 179</p> <p>Table 2. Sources of samples, Mussoorie area, India.............................................................180</p> <p>Table 3. Specific gravity and uranium content of Mussoorie phosphorites, India...................181</p> <p>Table 4. Magnetic intensity and uranium content of Mussoorie phosphorites, India ..181</p> <p>Table 5. Size distribution and uranium content of Mussoorie phosphorites, India ..181</p> <p>Table 6. Thorium content of Mussoorie phosphorites, India............................................181</p> <p>Table 7. U3O8 and P2O5 content of Mussorie phosphorites, India.....................................181</p> <p>Table 8. Range and mean values (in ppm) of various elements in phosphorites, shales and</p> <p>limestones, Dehra Dun district, India .....................................................................183</p> <p>Table 9. Averages abundances of minor elements in limestone, phosphorite and black shales</p> <p>of Mussoorie, Dehra Dun district, Uttar Pradesh, India, compared with world</p> <p>averages in parts per million (ppm) .....................................................................185</p> <p>Table 10. Concentrations and enrichment factors for minor elements in limestone, phosphorite</p> <p>and black shales of Mussoorie, Dehra Dun district, Uttar Pradesh, India..............185</p> <p>Figure 1. Outcrops of the lower Tal Formations in the Mussoorie area, Dehra Dun district,</p> <p>Uttar Pradesh, India.................................................................... ..180</p> <p>Figure 2. Relations of uranium to P2O5 in Mussoorie phosphorites, Dehra Dun district,</p> <p>Uttar Pradesh, India...............................................................................182</p> <p>Figure 3. Trends of rare metals in limestones, phosphorites, and black shales of the Mussoorie</p> <p>area, Dehra Dun district, Uttar Pradesh, India..............................186</p> <ol> <li>Geochemical exploration of the Chimei copper deposit, Taiwan (abstract) ...........................188</li> <li>Mercury content of some British soils (abstract) .....................................................................189</li> <li>Detailed geochemical exploration for Mo-W and CaF2 in Hwanggangri region, Republic of Korea 190</li> </ol> <p>Table 1. Background abundances of metals and CaF2 in selected geologic formations in the</p> <p>Hwanggangri region, Republic of Korea (in ppm)..............................191</p> <p>Figure 1. Map showing geologic and geochemical reconnaissance for fluorite of Hwang[1]gangri region, Republic of Korea......................................................191</p> <p>Figure 2. Map showing geologic and geochemical reconnaissance for tungsten of Hwanggangri region, Republic of Korea..............................................................191</p> <p>Figure 3. Geochemical soil investigation for tungsten, Sinluksa area, Hwanggangri region,</p> <p>Republic of Korea...............................................................................192</p> <p>Figure 4. Geochemical soil investigaton for molybdenum, Sinluksa area, Hwanggangri region,</p> <p>Republic of Korea...............................................................................192</p> <p>Figure 5. Logarithmic graph of copper, lead, zinc, and fluorite content of rock and soil</p> <p>samples from Sungori Ridge, Hwanggangri region, Republic of Korea&hellip;193</p> <ol> <li>Geochemistry of nickel in the weathering cycle, Sukinda area, Orissa, India........................... 194</li> </ol> <p>Table 1. Chemical analyses of talc-serpentine rock and overlying soil from Sukinda area,</p> <p>Orissa, India ..................................................... 196</p> <p>Table 2. Analyses showing residual concentration of Mn and Co in the Sukinda area, Orissa,</p> <p>India............................................................................................................ 196</p> <p>Table 3. Results of beneficiation tests on limonite from the Sukinda area, India 197</p> <ol> <li>Techniques based on water and other medio,</li> </ol> <p>including iron and manganese precipitates in stream beds</p> <p>2Cb</p> <ol> <li>Geochemical studies of tin in granite and basalt and of fine tin alluvium, Thailand .. 199</li> </ol> <p>Table 1. Tin and tungsten in granites in northern Thailand ............................ .. .. 200</p> <p>Table 2. Tin and tungsten in granites in southern Thailand ................................................. 200</p> <p>Table 3. Tin and tungsten in granites in central andsoutheasternThailand............................201</p> <p>Table 4. Tin in basalt in Thailand.................................................................................................201</p> <p>Table 5. Tin in mud, Phang-Nga Province, Thailand.................................................................. 201</p> <p>Table 6. Tin in mud downstreamfrom active mining areas, Thailand..........................................201</p> <p>Table 7. Tin in sand from Lampae stream, Trang Province, Thailand .. .. .. 202</p> <p>Table 8. Tin in mud and sand, Klong Thom stream, Krabi Province, Thailand .. .. 202</p> <p>Figure 1. Map showing provincial locations mentioned in descriptions of cassiterite samples</p> <p>from Thailand........................................................................................... 199</p> <ol> <li>Controls on Mn, Fe, Co, Ni, Cu, and Zn concentrations in soils and water: the significant</li> </ol> <p>role of hydrous Mn and Fe oxides (abstract) ........................................................................ 203</p> <ol> <li>Ground water chemistry as a tool for geologic investigations in the southeastern Piedmont</li> </ol> <p>(abstract) ................................................................................................................................ 204</p> <p>2D. USES OF MINERALOGY AND PETROLOGY IN GEOCHEMICAL EXPLORATION</p> <p>2D</p> <ol> <li>Mineralogy and petrology in the geochemical programme................................................................ 205</li> </ol> <p>2E. INTEGRATED GEOCHEMICAL AND GEOPHYSICAL EXPLORATION</p> <p>2E</p> <ol> <li>Geochemical study on part of the Manton grid, Rum Jungle area, Northern Territory (abstract) 208</li> <li>Geochemistry in exploration through transported overburden at Cobar, N.S.W. (abstract) .. 209</li> <li>Preliminary geochemical study for nickel in soil over serpentinite at Ban Ragam, Chanthaburi</li> </ol> <p>Province, Thailand, with a section on geomagnetic survey.......................................................210</p> <p>Table 1. Nickel, cobalt, and chromium analyses and chemical analyses of weathered and</p> <p>fresh serpentinite, Ban Ragam area, Chanthaburi Province, Thailand.214</p> <p>xiii</p> <p>Page</p> <p>Figure 1. Index map of Chanthaburi area, Thailand .................................................................. 211</p> <p>Figure 2. Topographic map showing geomorphic features in the area of Ban Phra Trong, Ban</p> <p>Ragam, and Ban Ta Mun, Thailand ......................................................211</p> <p>Figure 3. Generalized geologic map of the area around Ban Phra Trong, Ban Ragam, and</p> <p>Ban Ta Mun, Thailand, showing distribution of outcrops.................. 212</p> <p>Figure 4. Geochemical map showing distribution of nickel (ppm) in near-surface soils at</p> <p>the Ban Ragam nickel prospect, Thailand ........................................... 214</p> <p>Figure 5. Profile of bedrock geology with nickel in overlying soils along base-line, Ban Ragam</p> <p>nickel prospect, Thailand............................................................................ 215</p> <p>Figure 6. Profile of bedrock geology with nickel in overlying soils along traverse-line E-W,</p> <p>Ban Ragam nickel prospect, Thailand....................................................215</p> <p>Figure 7. Variation in nickel content with depth at the Ban Ragam nickel prospect, Thailand 215</p> <p>Figure 8. Vertical intensity contours over serpentinite body at the Ban Ragam nickel pros[1]pect, Thailand. Contour interval 200 gammas...................................216</p> <p>Figure 9. Vertical intensity profile over serpentinite body at the Ban Ragam nickel prospect,</p> <p>Thailand.....................................................................................................217</p> <p>Figure 10. Comparison of geomagnetic anomaly and geochemical anomaly at the Ban Ragam</p> <p>nickel prospect, Thailand............................................................................217</p> <ol> <li>Combined geosurveys in some parts of the Indian peninsular shield.................................................219</li> </ol> <p>Figure 1. Geological map of south India showing location of Chitaldrug, Kodakola, and</p> <p>Sowanahalli areas ....................................................................................219</p> <p>Figure 2. Tectonophysical map of the central part of the Chitaldrug schist belt, Mysore,</p> <p>India, showing geology, structure and aeromagnetic anomaly contours..220</p> <p>Figure 3. Tectonophysical map of the central part of the Chitaldrug schist belt, Mysore,</p> <p>India, showing geology, structure, Bouguer anomaly contours and distribution of</p> <p>gravity stations............................................................................................ 221</p> <ol> <li>Preliminary report of geochemical and geohpysical studies of copper mineralization at Khao Ta</li> </ol> <p>Jeed, Khao Ta Pa, Khao Din, and Khao Nam Yot, Amphoe Phanon Sarakham,</p> <p>Chachoengsao Province, Thailand................................................... 223</p> <p>Table 1. Copper, lead, and zinc in schist from Chachoengsao Province, Thailand, in parts</p> <p>per million (ppm) ....................................................................................229</p> <p>Figure 1. Index map showing location of Khao Nam Yot, Khao Din, Khao Ta Jeed, and</p> <p>Khao Ta Pa, Amphoe Phanomsarakham, Chachoengsao Province, Thailand, and</p> <p>topographic map of prospected area............. 224</p> <p>Figure 2. Geochemical map showing distribution of copper (ppm) in near-surface soils, Khao</p> <p>Ta Jeed copper prospect, Thailand ................................................... 225</p> <p>Figure 3. Geochemical map showing distribution of copper (ppm) in near-surface soils, Khao</p> <p>Din copper prospect, Thailand ............................................................226</p> <p>Figure 4. Geochemical map showing distribution of copper (ppm) in near-surface soils, Khao</p> <p>Ta Pa copper prospect, Thailand........................................................... 226</p> <p>Figure 5. Turam profiles, Khao Din copper prospect, Thailand..................................................227</p> <p>Figure 6. Turam profiles, Khao Ta Jeed copper prospect, Thailand......................................... 228</p> <ol> <li>Investigation of a nickeliferous &ldquo;laterite&rdquo; in the Kauramembo Mountains (Wanamu&mdash; Blue</li> </ol> <p>Mountains area), Barama River, North West District, Guyana.230</p> <p>Figure 1. Geology of the Kauramembu Mountains (Wanamu &mdash; Blue Mountains area),</p> <p>Middle Barama, Guyana...........................................................................231</p> <p>Figure 2. Section through drill holes 6 to 17, Kauramembu Mountains, Guyana........................235</p> <ol> <li>Geochemical and radiometric results from three areas, Woodcutters Prospect, Rum Jungle East,</li> </ol> <p>Northern Territory (abstract)........................................................239</p> <ol> <li>Geochemistry in an integrated mineral survey in north-east Thailand ........................................ 240</li> </ol> <p>Table 1. Working mean background and apparent threshold for copper, lead, and zinc, Loei</p> <p>area, Thailand...........................................................................................242</p> <p>Table 2. Summary of stratigraphy in Loei-Chiang Khan area, Thailand .................................243</p> <p>Table 3. Five stream sediment samples collected near Phu Khum, Thailand.................................243</p> <p>Table 4. Local mean background, standard deviation, and threshold for Cu, Pb, and Zn</p> <p>at Phu Khum 1, Loei area, Thailand ..................................................245</p> <p>Table 5. Log of drill core, Loei area, Thailand.........................................................................246</p> <p>Figure 1. Reconnaissance geochemical survey of the Loei River drainage basin, Thailand .. 248</p> <p>Figure 2. Outline geological map of the Loei-Chiang Khan area of Thailand ....................... 249</p> <p>Figure 3. The Phu Khum area, Thailand .................................................................................249</p> <p>Figure 4. Geology, geochemistry and geophysics of Phu Khum 1, Thailand................................ 249</p> <p>Figure 5. Relations of geochemistry and geology, Phu Khum 1, Thailand................................ 250</p> <p>Figure 6. Geology, geochemistry and geophysics of Phu Khum 2, Thailand ........................ 250</p> <p>Figure 7. Relationship of geochemistry to geology, Phu Khum 2, Thailand ........................ 251</p> <p>Figure 8. Organization of the work programme, north-east Thailand.........................................251</p> <p>2F. INTERRELATIONS OF AERIAL PHOTOGRAPHY, PARTICULARLY INFRARED COLOUR</p> <p>PHOTOGRAPHY, WITH GEOBOTANICAL AND BIOGEOCHEMICAL EXPLORATION</p> <p>2F</p> <ol> <li>Assessment of satellite photographs for geological mapping and research (abstract)........................252</li> <li>Remote detection of geochemical soil anomalies .........................................................................253</li> </ol> <p>Table 1. Metal content of red spruce (and supporting soil) used for reflectance measure[1]ments, west-central Maine, USA.......................................................... 256</p> <p>Table 2. Metal content of balsam fir (and supporting soil) used for reflectance measure[1]ments, west-central Maine, USA .......................................................... 256</p> <p>Figure 1. Photograph showing method of obtaining reflectance data in a downward-looking</p> <p>orientation, west-central Maine, USA ..................................................255</p> <p>Figure 2. Reflectance of red spruce, west-central Maine, USA................................................ 255</p> <p>Figure 3. Reflectance of balsam fir, west-central Maine, USA................................................ 255</p> <p>xv</p> <ol> <li>Applications of aerial photography in regional geologic mapping ............................................257</li> </ol> <p>Figure 1. Schematic diagram of relative reflectance of grass and gray rock ...................259</p> <p>Figure 2. Curves showing the spectral reflectance of: A-grass, B-pine tree, and C-green plant 261</p> <p>2G. RECENT ADVANCES IN ANALYTICAL TECHNIQUES</p> <ol> <li>Chemical procedures</li> </ol> <p>2Ga</p> <ol> <li>Studies on the method of estimation of cold extractable copper in soil....................................263</li> </ol> <p>Table 1. Total copper, cold extractable copper (ammonium citrate as extractant), and cold</p> <p>extractable copper (1% HC1 as extractant) in the line SW/24, Tama Pahar</p> <p>block, Singhbhum Copper Belt, Bihar, India......................................265</p> <p>Table 2. Total copper, cold extractable copper (ammonium citrate as extractant), and cold</p> <p>extractable copper (1% HC1 as extractant) in line SW/25, Tama Pahar block,</p> <p>Singhbhum Copper Belt, Bihar, India..............................................265</p> <p>Table 3. Ratio of total copper and cold extractable copper at highest anomaly point, Tama</p> <p>Pahar block, Singhbhum Copper Belt, Bihar, India ......................265</p> <p>Figure 1. Comparative cold extractable copper values in soils and corresponding total copper</p> <p>in line SW/25, Tama Pahar block, Singhbhum Copper Belt, Bihar, India ..265</p> <p>Figure 2. Comparative cold extractable copper values in soils and corresponding total copper</p> <p>in line SW/24, Tama Pahar block, Singhbhum Copper Belt, Bihar, India ..266</p> <ol> <li>Methods of analysis of subsurface waters (abstract).....................................................................267</li> <li>A simple and rapid indirect determination of fluorine in minerals and rocks (abstract) ..268</li> <li>Specific ion electrodes in geochemistry.............................................................................................269</li> </ol> <p>Table 1. Specific ion electrodes available in 1970 from Orion Research Incorporated..270</p> <p>Figure 1. The activity coefficient of a monovalent ion in solutions of varying ionic strength</p> <p>(the example used is fluoride) ......................................................271</p> <ol> <li>A spectrophotometric method for the determination of traces of platinum and palladium in</li> </ol> <p>geologic materials (abstract).................................................................................... ..274</p> <ol> <li>Atomic absorption</li> </ol> <p>2Gb</p> <ol> <li>Comparison of analytical accuracy of X-ray fluorescence and atomic absorption analyses in</li> </ol> <p>geochemical samples ...............................................................................................................275</p> <p>Table 1. Nickel determination by X-ray fluorescence showing apparent values and corrected</p> <p>values in an extreme range of geochemical matrix types from Australia ..276</p> <p>Table 2. Comparison of nickel atomic absorption, X-ray fluorescence and atomic absorption standard addition results (ppm) on samples from Australia.....278</p> <p>Table 3. Comparison of copper atomic absorption, X-ray fluorescence and atomic absorption standard addition results (ppm) on samples from Australia.....278</p> <p>Figure 1. Atomic absorption standard additions calculation by graphical extrapolation 277</p> <p>Figure 2. Graph of X-ray fluorescence/atomic absorption ratio for nickel ..279</p> <p>Figure 3. Graph of X-ray fluorescence/atomic absorption standard addition ratio for nickel 279</p> <p>Figure 4. Graph of X-ray fluorescence/atomic absorption concentration absorbance ratio for</p> <p>copper ......................................................................................................................279</p> <p>Figure 5. Graph of X-ray fluorescence/atomic absorption standard addition ratio for copper 279</p> <ol> <li>Atomic absorption determination of cadmium in geologic materials (abstract) .................. 281</li> <li>Atomic absorption determination of tellurium (abstract) ............................................................282</li> <li>Rapid analysis for gold in geologic materials (abstract) .. ....................................................283</li> <li>Atomic absorption determination of bismuth in altered rocks (abstract)...................................284</li> <li>Emission spectrography</li> </ol> <p>2Gc</p> <ol> <li>Determination of palladium, platinum and rhodium in geologic materials by fire assay and</li> </ol> <p>emission spectrography (abstract)..............................................................................................285</p> <ol> <li>Spectrochemistry applied to geology and geochemistry by the United States Geological Survey</li> </ol> <p>in the Rocky Mountain region ............................................................................................286</p> <p>Table 1. Data on contamination of samples after grinding with steel and ceramic plates in</p> <p>a Bico-type grinder (in ppm) at the United States Geological Survey laboratory ..287</p> <p>Table 2. Evolution of semiquantitative methods of reporting results as midpoints of brackets</p> <p>or ranges in the United States Geological Survey.............................289</p> <p>Table 3. Lower limits of determination (in ppm) for 56 trace elements as determined in</p> <p>the United States Geological Survey spectrographic laboratory in Denver in 1970 289</p> <p>Table 4. Jasperoid used as &ldquo;indicator&rdquo; or guide to ore in the United States...................291</p> <p>Figure 1. Ceramic mills showing component parts, as used by United States Geological Survey 287</p> <p>Figure 2. Ceramic mills shown in wooden holding frame in a Red Devil paint mixer as used</p> <p>in laboratory of United States Geological Survey.............................287</p> <p>Figure 3. Bico-type grinder with set of ceramic plates attached. Second set of plates is in</p> <p>foreground. Laboratory of the United States Geological Survey....287</p> <p>Figure 4. Agate mortar and pestle shown in Fischer-type mortar grinder in use in United</p> <p>States Geological Survey......................................................................288</p> <ol> <li>X-ray fluorescence</li> </ol> <p>2Gd</p> <ol> <li>X-ray fluorescence analysis .............................................................................................................292</li> </ol> <p>Table 1. Recommended combinations of X-ray tube, analyzing crystal and detector for</p> <p>various wavelengths (or elements) .....................................................299</p> <p>Figure 1. Diagramatic sketch showing components of an X-ray spectrograph...................294</p> <p>Figure 2. Diagram showing relation of intensity to element....................................................295</p> <p>Figure 3. Sketch of atom showing loss of K-electron............................................................296</p> <p>Figure 4. Sketch showing X-ray and electron excitation ....................................................296</p> <p>Figure 5. Sketches showing (A) Cu and Ag X-ray energy, and (B) pulse distributions .. 299</p> <p>Figure 6. Sketch showing example of mass absorption in a uniform sample.....................300</p> <p>Figure 7. Sketch showing linear relation between counts/second and per cent ..301</p> <p>Figure 8. Sketch showing smooth curves resulting from method 2 ......................................301</p> <p>Figure 9. Sketch showing linear relation from Internal Standard Method.............................302</p> <p>Figure 10. Sketch to show scatter in method 6 .....................................................................303</p> <ol> <li>Determination of bromine and iodine by X-ray fluorescence (abstract)....................................308</li> </ol> <p>2H. STATISTICAL PROCEDURES IN GEOCHEMICAL EXPLORATION</p> <p>2H</p> <ol> <li>Choice of effective anomalous values from among the local thresholds in Lower Yeboke area,</li> </ol> <p>Southern Shan State, Burma.......................................................................................................309</p> <p>Table 1. Calculation of cumulative frequency of copper in Lower Yeboke area, Burma ..310</p> <p>Table 2. Parameters for lead, zinc, and copper in Lower Yeboke area, Burma....................311</p> <p>Table 3. Anomalous values for lead, zinc, and copper in Lower Yeboke area, Burma,</p> <p>in ppm .. .. ...............................................................................312</p> <p>Figure 1. Frequency distribution of copper in 146 samples from the Lower Yeboke area,</p> <p>Burma; (a) arithmetic, and (b) logarithmic......................................310</p> <p>Figure 2. Construction of working curve on probability paper; example for copper from</p> <p>Lower Yeboke area, Burma ...............................................................311</p> <p>Figure 3. Anomaly map for copper in Lower Yeboke area, Burma....................................312</p> <ol> <li>Geostatistics in geochemical exploration &mdash; a review .....................................................................314</li> </ol> <p>Table 1. Four levels of measurement and the statistics appropriate to each level&hellip;.316</p> <p>Table 2. Example showing format for assigning ranks and calculating Spearman&rsquo;s correlation</p> <p>coefficient ......................................................................................................................317</p> <p>Table 3. Analysis of variance between general and detailed gruss sampling (from Garrett,</p> <p>1967) ...............................................................................................321</p> <p>Table 4. Example of arithmetic versus log to transformed statistics from Coronation Mine</p> <p>regional population (from Langford, 1965)......................................324</p> <p>Table 5. Computation of chi squared.....................................................................................327</p> <p>Table 6. Correlation coefficients of minor elements .............................................................330</p> <p>Table 7. Example of Q-mode cluster analysis of attributes....................................................335</p> <p>Figure 1. Example of frequency distribution curve .............................................................317</p> <p>Figure 2. Sketches showing overlap of populations .............................................................317</p> <p>Figure 3. Sketch showing regional variation in percentage of SiO2 in rocks in the continental</p> <p>United States (after Miesch personal communication)......................320</p> <p>Figure 4. Histograms of means ................... .....................................................................321</p> <p>Figure 5. Contour map of hypothetical sample values (after Miesch, 1964) ...................322</p> <p>Figure 6. Contour map of planar trend (after Miesch, 1964) ............................................322</p> <p>Figure 7. Contour map of planar trend computed from data of figure 5 (after Miesch, 1964) 322</p> <p>Figure 8. Contour map of deviations of sample values from planar trend in figure 7. Areas</p> <p>negative deviation shown by stipple pattern (after Miesch, 1964) ...................322</p> <p>Figure 9. Contour map of planar trend and trend deviations, computed from cell means</p> <p>(16 sample values per cell). Areas of negative deviation shown by stipple pattern</p> <p>(after Miesch, 1964).....................................................................................................323</p> <p>Figure 10. Schematic of anomalies occurring in a regular grid ............................................323</p> <p>Figure 11. Profile across sill .....................................................................................................325</p> <p>Figure 12. (A) Schematic plan of area of ultramafic rocks and black shale in Western Australia,</p> <p>and (B) frequency distribution plots of nickel and copper............325</p> <p>Figure 13. Normal and log-normal probability density curves ............................................326</p> <p>Figure 14. Sketch showing the relations of two linearly correlated variables ...................331</p> <p>Figure 15. Sketch showing the relation of natural data and rolling mean data...................333</p> <p>Figure 16. Sketch showing moving mean analysis of samples on a regular grid...................333</p> <p>Figure 17. Schematic comparison of profiles............................................................................333</p> <p>Figure 18. Sketch diagramming results of discriminant function analysis ...........................334</p> <p>Figure 19. Hypothetical data array (from Bonham-Carter, 1967) ...................................335</p> <p>Figure 20. Dendrogram plot for data array of figure 19 (from Bonham-Carter, 1967) ..335</p> <p>Figure 21. Schematic showing simplified geochemical example of some factor analysis principles (after Garrett, personal communication) .............................337</p> <ol> <li>Data recording in mineral exploration.................................................... ...................................341</li> </ol> <p>Figure 1. Sequence of collection, collation and processing of field and laboratory data in</p> <p>mineral exploration..............................................................................342</p> <p>Figure 2. Geochemical field form for stream sediments &mdash; GFF1...........................................343</p> <p>Figure 3. Geochemical field form for soil samples &mdash; GFF2.....................................................343</p> <p>Figure 4. Geochemical field card (Port-a-punch) for stream sedimentsamples &mdash; GFC1 ..344</p> <p>Figure 5. Geochemical field card (Port-a-punch) for soils &mdash; GFC2.....................344</p> <p>Figure 6. Geological field form (structural) SSF1....................................................................346</p> <p>Figure 7. Mark-sense card for analytical results .....................................................................346</p> <p>Figure 8. Print-out of raw data from a stream sediment survey in Thailand. Coded field</p> <p>information is given on the left and element analyses on the right: a statistical</p> <p>summary of the batch of 100 samples is given at the bottom and comprises mean,</p> <p>standard deviation (SD), minimum value (VMIN) and maximum value (VMAX) 347</p> <p>Figure 9. Principal horizons in a hypothetical soil profile (from &lsquo;Geochemistry in Mineral</p> <p>Exploration', Hawkes and Webb, 1962).............................................350</p> <p>Figure 10. Boudin structure showing axial direction of boudins ............................................354</p> <p>Figure 11. Styles of small-scale folding.....................................................................................354</p> <ol> <li>The importance of patterns of geochemical distribution of elements with special reference to</li> </ol> <p>reconnaissance geochemical exploration in the tropics..................................................................356</p> <p>Figure 1. Climatic divisions of tropical regions...........................................................................357</p> <p>Figure 2. Degree of mobility of elements in tropical regions .. .................................357</p> <p>Figure 3. Typical freely drained soil profile, North Western Province, Zambia........................ 358</p> <p>Figure 4. Distribution of Cu in near-surface soils and stream sediments (ringed), North</p> <p>Western Province, Zambia ........................................................................................... 359</p> <p>Figure 5. Section along trench cut into bank of a stream at the edge of the dambo 200 ft</p> <p>upstream from the section shown in figure 4........................................... 359</p> <p>Figure 6. Variation in Cu content of near-surface freely drained soil, North Western Province,</p> <p>Zambia ..................................................................................................... 360</p> <ol> <li>Use of cumulative frequency plots to facilitate interpretation of geochemical data........................ 361</li> </ol> <p>Figure 1. Log-probability plot of cumulative frequency for nickel .......................................... 362</p> <p>Figure 2. Log-probability plot of cumulative frequency for lead..................................................363</p> <p>Figure 3. Log-probability plot of cumulative frequency for zinc..................................................363</p> <p>Figure 4. Simplified geochemical contours for lead and zinc in area from which the example</p> <p>discussed in the text is taken...........................................................................................364</p> <p>Figure 5. Diagrammatic representation of alternative interpretation of Figure 3......................... 364</p> <p>Figure 6. Example of manual preparation of a cumulative frequency plot..................................365</p> <p>Figure 7. Log-probability plot of cumulative frequency for copper .......................................... 366</p> <ol start="21"> <li>USE OF NON-PROFESSIONAL ASSISTANTS IN MINERAL EXPLORATION</li> </ol> <p>21</p> <ol> <li>Use of non-professional people in geochemical prospecting ..........................................................367</li> <li>Training abroad of sub-professional workers in earth sciences .. ................................................. 369</li> <li>Possible use of technically untrained young people in national programs of mineral exploration 372</li> </ol> <p>Table 1. Numbers and enrollments of schools, colleges, and universities in selected nations</p> <p>in the late 1950&rsquo;s and 1960&rsquo;s....................................................................373</p> <p>Table 2. Distribution of 4-H clubs and similar organizations in selected countries in 1966 373</p> <ol> <li>Use of middle level personnel in the Geological Survey Department of Ceylon ........................ 376</li> </ol> <p>Table 1. Status of geological mapping to July 1970 in Ceylon.................................................. 378</p> <p>Table 2. Footage of diamond drilling over selected periods in Ceylon......................................... 379</p> <p>Figure 1. Ceylon Geological Survey Department organizational chart and cadre of scientific</p> <p>and technical staff &mdash; 1969/1970 . 377</p> <p>Figure 2. Manpower in the Geological Survey Department for the period 1957/1958 &mdash;</p> <p>1969/1970 ....................................................................................... 377</p> <p>Figure 3. Progress of geological mapping in Ceylon up to July 1970 .. ................... 379</p> <p>Figure 4. Ratio of scientific staff to middle level personnel and actual expenditure for the</p> <p>financial years 1950/1951 to 1968/1969, Geological Survey Department of Ceylon 380</p> <p>2J. GEOLOGY, GEOMORPHOLOGY, AND SOILS OF CEYLON</p> <p>With reference to the setting of the Uduwella-Pallegama area used for field demonstrations</p> <ol> <li>The geology and mineral resources of Ceylon .............................................................................381</li> </ol> <p>Table 1. Geologic formations of Ceylon ..382</p> <p>Figure 1. Geological map of Ceylon .....................................................................................381</p> <p>Figure 2. Map showing the main structural trends in Ceylon ............................................387</p> <p>Figure 3. Mineral map of Ceylon.............................................................................................388</p> <ol> <li>A study of the geomorphology and morphotectonics of Ceylon....................................................391</li> </ol> <p>Table 1. Mean annual escapes from major river basins in Ceylon into the ocean or coastal</p> <p>lagoons ...............................................................................................397</p> <p>Table 2. Morphotectonic provinces of Ceylon ....................................................................402</p> <p>Figure 1. Morphological map of Ceylon.....................................................................................391</p> <p>Figure 2. Geological and structural features affecting the morphology of Ceylon...................392</p> <p>Figure 3. Structure and geomorphic features of Ceylon............................................................393</p> <p>Figure 4. Morphotectonic regions of Ceylon............................................................................394</p> <p>Figure 5. Rivers and river basins of Ceylon...................................395</p> <p>Figure 6. Analysis of the hill country of Ceylon (after Cook)...........................................396</p> <p>Figure 7. Response of Precambrian terrain in the Dambulla &mdash; Kurunegalla area, Ceylon, to</p> <p>earth movements since 1926 ..............................................................397</p> <ol> <li>The soils of Ceylon and their development with special reference to the soils in the region of</li> </ol> <p>Uduwela-Pallegama (Kandy District) ....................................406</p> <ol> <li>Geology and morphology of the Uduwela area.............................................................................411</li> </ol> <p>Figure 1. Geology along the road from Ampitiya to Uduwela, Ceylon ...........................411</p> <p>Figure 2. Geology of the Uduwela area, Ceylon .. ..................................... ..412</p>
dc.format.extentxxi, 413 p.
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUnited Nations
dc.relation.ispartofseriesMineral Resources Development Series
dc.rightsThis publication may be reproduced in whole or in part for educational or non-profit purposes without special permission from the copyright holder, provided that the source is acknowledged. The ESCAP Publications Office would appreciate receiving a copy of any publication that uses this publication as a source.
dc.rightsUse may not be made of this publication for resale or any other commercial purpose whatsoever without prior permission. Applications for such permission, with a statement of the purpose and extent of reproduction, should be addressed to the Secretary of the Publications Board, United Nations, New York.
dc.titleProceedings of the Second Seminar on Geochemical Prospecting Methods and Techniques
dc.typeText
dc.rights.holderUnited Nations
dc.subject.unbistGEOCHEMISTRY
dc.subject.unbistEARTH SCIENCES
dc.subject.unbistGEOCHEMICAL PROSPECTING
dc.subject.unbistHUMID TROPICS
dc.subject.unbistHUMID TROPICS
escap.publisherPlaceNew York
escap.doctypeReport
escap.programmeOfWorkEnvironment and Development
escap.programmeOfWorkEnvironment and Development
escap.unDocSymbolE/CN.11/993
escap.unSalesNumberE.72.II.F.2
escap.libBibNumber36022
escap.bibLevelSerial
escap.libCallnumberA X(5-012):553 Uni 1963 No. 38
escap.eventNameSecond seminar on geochemical prospecting methods and techniques
escap.eventTypeSeminar
escap.eventDate1970-09-20
escap.eventLocationUniversity of Ceylon, Peradeniya
escap.contactUnitEnvironment and Development Division
escap.ispartofseriesnoMineral Resources Development Series;38
dc.date.escap1970
dc.relation.ispartofseriesnoNo. 38


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record